Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(50): 8596-8606, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37863654

RESUMEN

Leucine-rich glioma inactivated 1 (LGI1) is a glycoprotein secreted by neurons, the deletion of which leads to autosomal dominant lateral temporal lobe epilepsy. We previously showed that LGI1 deficiency in a mouse model (i.e., knock-out for LGI1 or KO-Lgi1) decreased Kv1.1 channel density at the axon initial segment (AIS) and at presynaptic terminals, thus enhancing both intrinsic excitability and glutamate release. However, it is not known whether normal excitability can be restored in epileptic neurons. Here, we show that the selective expression of LGI1 in KO-Lgi1 neurons from mice of both sexes, using single-cell electroporation, reduces intrinsic excitability and restores both the Kv1.1-mediated D-type current and Kv1.1 channels at the AIS. In addition, we show that the homeostatic-like shortening of the AIS length observed in KO-Lgi1 neurons is prevented in neurons electroporated with the Lgi1 gene. Furthermore, we reveal a spatial gradient of intrinsic excitability that is centered on the electroporated neuron. We conclude that expression of LGI1 restores normal excitability through functional Kv1 channels at the AIS.SIGNIFICANCE STATEMENT The lack of leucine-rich glioma inactivated 1 (LGI1) protein induces severe epileptic seizures that leads to death. Enhanced intrinsic and synaptic excitation in KO-Lgi1 mice is because of the decrease in Kv1.1 channels in CA3 neurons. However, the conditions to restore normal excitability profile in epileptic neurons remain to be defined. We show here that the expression of LGI1 in KO-Lgi1 neurons in single neurons reduces intrinsic excitability, and restores both the Kv1.1-mediated D-type current and Kv1.1 channels at the axon initial segment (AIS). Furthermore, the homeostatic shortening of the AIS length observed in KO-Lgi1 neurons is prevented in neurons in which the Lgi1 gene has been rescued. We conclude that LGI1 constitutes a critical factor to restore normal excitability in epileptic neurons.


Asunto(s)
Epilepsia del Lóbulo Frontal , Glioma , Neuronas , Animales , Femenino , Masculino , Ratones , Epilepsia del Lóbulo Frontal/genética , Epilepsia del Lóbulo Frontal/metabolismo , Leucina/metabolismo , Neuronas/fisiología , Convulsiones/genética
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34799447

RESUMEN

Homeostatic plasticity of intrinsic excitability goes hand in hand with homeostatic plasticity of synaptic transmission. However, the mechanisms linking the two forms of homeostatic regulation have not been identified so far. Using electrophysiological, imaging, and immunohistochemical techniques, we show here that blockade of excitatory synaptic receptors for 2 to 3 d induces an up-regulation of both synaptic transmission at CA3-CA3 connections and intrinsic excitability of CA3 pyramidal neurons. Intrinsic plasticity was found to be mediated by a reduction of Kv1.1 channel density at the axon initial segment. In activity-deprived circuits, CA3-CA3 synapses were found to express a high release probability, an insensitivity to dendrotoxin, and a lack of depolarization-induced presynaptic facilitation, indicating a reduction in presynaptic Kv1.1 function. Further support for the down-regulation of axonal Kv1.1 channels in activity-deprived neurons was the broadening of action potentials measured in the axon. We conclude that regulation of the axonal Kv1.1 channel constitutes a major mechanism linking intrinsic excitability and synaptic strength that accounts for the functional synergy existing between homeostatic regulation of intrinsic excitability and synaptic transmission.


Asunto(s)
Axones/metabolismo , Hipocampo/metabolismo , Homeostasis , Potenciales de Acción/fisiología , Animales , Plasticidad Neuronal , Neuronas/metabolismo , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
3.
Proc Natl Acad Sci U S A ; 114(29): 7719-7724, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673977

RESUMEN

Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current. LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.


Asunto(s)
Axones/metabolismo , Proteínas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Potenciales de Acción , Animales , Venenos Elapídicos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Canal de Potasio Kv.1.2/metabolismo , Ratones Mutantes , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Proteínas/genética , Proteínas/farmacología , Ratas Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
4.
Nat Commun ; 6: 10163, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26657943

RESUMEN

In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue-digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3-CA3 and L5-L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma-axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony.


Asunto(s)
Axones/fisiología , Potenciales de la Membrana/fisiología , Terminales Presinápticos , Canales de Sodio/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/fisiología , Calcio/metabolismo , Simulación por Computador , Femenino , Masculino , Modelos Biológicos , Red Nerviosa/fisiología , Neuronas , Ratas
5.
Eur J Neurosci ; 41(3): 293-304, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25394682

RESUMEN

Synaptic transmission usually depends on action potentials (APs) in an all-or-none (digital) fashion. Recent studies indicate, however, that subthreshold presynaptic depolarization may facilitate spike-evoked transmission, thus creating an analog modulation of spike-evoked synaptic transmission, also called analog-digital (AD) synaptic facilitation. Yet, the underlying mechanisms behind this facilitation remain unclear. We show here that AD facilitation at rat CA3-CA3 synapses is time-dependent and requires long presynaptic depolarization (5-10 s) for its induction. This depolarization-induced AD facilitation (d-ADF) is blocked by the specific Kv1.1 channel blocker dendrotoxin-K. Using fast voltage-imaging of the axon, we show that somatic depolarization used for induction of d-ADF broadened the AP in the axon through inactivation of Kv1.1 channels. Somatic depolarization enhanced spike-evoked calcium signals in presynaptic terminals, but not basal calcium. In conclusion, axonal Kv1.1 channels determine glutamate release in CA3 neurons in a time-dependent manner through the control of the presynaptic spike waveform.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/fisiología , Canal de Potasio Kv.1.1/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Región CA3 Hipocampal/efectos de los fármacos , Calcio/metabolismo , Quelantes del Calcio/farmacología , Ácido Egtácico/farmacología , Ácido Glutámico/metabolismo , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Modelos Neurológicos , Técnicas de Placa-Clamp , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Wistar , Sodio/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Tiempo , Técnicas de Cultivo de Tejidos
6.
Cereb Cortex ; 25(8): 2282-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24610121

RESUMEN

Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axones/fisiología , Isquemia Encefálica/fisiopatología , Encéfalo/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Animales , Ancirinas/metabolismo , Axones/patología , Bencenosulfonatos/farmacología , Encéfalo/patología , Isquemia Encefálica/patología , Calcio/metabolismo , Calpaína/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas Wistar , Técnicas de Cultivo de Tejidos , Canales de Sodio Activados por Voltaje/metabolismo
7.
Cell Mol Life Sci ; 70(1): 105-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22763697

RESUMEN

Neuronal action potentials are generated through voltage-gated sodium channels, which are tethered by ankyrinG at the membrane of the axon initial segment (AIS). Despite the importance of the AIS in the control of neuronal excitability, the cellular and molecular mechanisms regulating sodium channel expression at the AIS remain elusive. Our results show that GSK3α/ß and ß-catenin phosphorylated by GSK3 (S33/37/T41) are localized at the AIS and are new components of this essential neuronal domain. Pharmacological inhibition of GSK3 or ß-catenin knockdown with shRNAs decreased the levels of phosphorylated-ß-catenin, ankyrinG, and voltage-gated sodium channels at the AIS, both "in vitro" and "in vivo", therefore diminishing neuronal excitability as evaluated via sodium current amplitude and action potential number. Thus, our results suggest a mechanism for the modulation of neuronal excitability through the control of sodium channel density by GSK3 and ß-catenin at the AIS.


Asunto(s)
Axones/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Canales de Sodio Activados por Voltaje/metabolismo , beta Catenina/fisiología , Potenciales de Acción , Animales , Ancirinas/metabolismo , Axones/fisiología , Glucógeno Sintasa Quinasa 3/análisis , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Ratones , Microtúbulos/metabolismo , Fosforilación , Interferencia de ARN , Canales de Sodio Activados por Voltaje/fisiología , beta Catenina/análisis , beta Catenina/antagonistas & inhibidores
8.
J Physiol ; 589(Pt 15): 3753-73, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21624967

RESUMEN

Hyperpolarization-activated cyclic nucleotide modulated current (I(h)) sets resonance frequency within the θ-range (5­12 Hz) in pyramidal neurons. However, its precise contribution to the temporal fidelity of spike generation in response to stimulation of excitatory or inhibitory synapses remains unclear. In conditions where pharmacological blockade of I(h) does not affect synaptic transmission, we show that postsynaptic h-channels improve spike time precision in CA1 pyramidal neurons through two main mechanisms. I(h) enhances precision of excitatory postsynaptic potential (EPSP)--spike coupling because I(h) reduces peak EPSP duration. I(h) improves the precision of rebound spiking following inhibitory postsynaptic potentials (IPSPs) in CA1 pyramidal neurons and sets pacemaker activity in stratum oriens interneurons because I(h) accelerates the decay of both IPSPs and after-hyperpolarizing potentials (AHPs). The contribution of h-channels to intrinsic resonance and EPSP waveform was comparatively much smaller in CA3 pyramidal neurons. Our results indicate that the elementary mechanisms by which postsynaptic h-channels control fidelity of spike timing at the scale of individual neurons may account for the decreased theta-activity observed in hippocampal and neocortical networks when h-channel activity is pharmacologically reduced.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Neocórtex/fisiología , Neuronas/fisiología , Canales de Potasio/fisiología , Células Piramidales/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Estimulación Eléctrica/métodos , Electrofisiología/métodos , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Neocórtex/efectos de los fármacos , Neuronas/efectos de los fármacos , Canales de Potasio/metabolismo , Células Piramidales/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
9.
J Physiol ; 589(Pt 5): 1117-31, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21224227

RESUMEN

Synaptic latency at cortical synapses is determined by the presynaptic release probability (Pr). Short- and long-term presynaptic plasticity is associated with modulation of synaptic delay. We show here that the duration and amplitude of the presynaptic action potential also determine synaptic latency at neocortical and hippocampal excitatory synapses. Blockade of voltage-gated potassium (Kv) channels with 4-aminopyridine or dendrotoxin-I, but not tetraethylammonium, induced a 1­2 ms shift in latency at excitatory synaptic connections formed by pairs of neocortical pyramidal neurons. 4-Aminopyridine or dendrotoxin-I, but not tetraethylammonium, increased the duration of the action potential recorded in the axon, suggesting that presynaptic spike duration is controlled by axonal Kv1 potassium channels. Spike width-dependent changes in latency have been identified at the mossy fibre­CA3 cell synapses and contribute to stabilization of synaptic timing during repetitive stimulation. The effects of presynaptic spike amplitude on synaptic latency were also examined. Decreasing the amplitude of the presynaptic action potential with 15­30 nm TTX reduced synaptic latency by ∼0.5 ms. The regulation of synaptic timing by potassium and sodium channel blockers could not be attributed to modulation of axonal conduction. Rather, these effects are compatible with modifications of the kinetics of the presynaptic calcium current. We conclude that synaptic latency at cortical neurons is not constant but dynamically regulated by presynaptic action potential waveform.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Sinapsis/fisiología , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Cerebral/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Canales de Potasio de la Superfamilia Shaker/fisiología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tetraetilamonio/farmacología
10.
J Neurosci ; 30(38): 12885-95, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20861392

RESUMEN

Homeostatic plasticity of neuronal intrinsic excitability (HPIE) operates to maintain networks within physiological bounds in response to chronic changes in activity. Classically, this form of plasticity adjusts the output firing level of the neuron through the regulation of voltage-gated ion channels. Ion channels also determine spike timing in individual neurons by shaping subthreshold synaptic and intrinsic potentials. Thus, an intriguing hypothesis is that HPIE can also regulate network synchronization. We show here that the dendrotoxin-sensitive D-type K+ current (ID) disrupts the precision of AP generation in CA3 pyramidal neurons and may, in turn, limit network synchronization. The reduced precision is mediated by the sequence of outward ID followed by inward Na+ current. The homeostatic downregulation of ID increases both spike-time precision and the propensity for synchronization in iteratively constructed networks in vitro. Thus, network synchronization is adjusted in area CA3 through activity-dependent remodeling of ID.


Asunto(s)
Región CA3 Hipocampal/fisiología , Homeostasis/fisiología , Red Nerviosa/fisiología , Canales de Potasio/fisiología , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
11.
Nat Protoc ; 3(10): 1559-68, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18802437

RESUMEN

Analysis of synaptic transmission, synaptic plasticity, axonal processing, synaptic timing or electrical coupling requires the simultaneous recording of both the pre- and postsynaptic compartments. Paired-recording technique of monosynaptically connected neurons is also an appropriate technique to probe the function of small molecules (calcium buffers, peptides or small proteins) at presynaptic terminals that are too small to allow direct whole-cell patch-clamp recording. We describe here a protocol for obtaining, in acute and cultured slices, synaptically connected pairs of cortical and hippocampal neurons, with a reasonably high probability. The protocol includes four main stages (acute/cultured slice preparation, visualization, recording and analysis) and can be completed in approximately 4 h.


Asunto(s)
Encéfalo/fisiología , Electrofisiología/métodos , Neuronas/metabolismo , Potenciales Sinápticos/fisiología , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos/métodos , Animales , Ratones , Ratas
12.
Neuron ; 56(6): 1048-60, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18093526

RESUMEN

In the cortex, synaptic latencies display small variations ( approximately 1-2 ms) that are generally considered to be negligible. We show here that the synaptic latency at monosynaptically connected pairs of L5 and CA3 pyramidal neurons is determined by the presynaptic release probability (Pr): synaptic latency being inversely correlated with the amplitude of the postsynaptic current and sensitive to manipulations of Pr. Changes in synaptic latency were also observed when Pr was physiologically regulated in short- and long-term synaptic plasticity. Paired-pulse depression and facilitation were respectively associated with increased and decreased synaptic latencies. Similarly, latencies were prolonged following induction of presynaptic LTD and reduced after LTP induction. We show using the dynamic-clamp technique that the observed covariation in latency and synaptic strength is a synergistic combination that significantly affects postsynaptic spiking. In conclusion, amplitude-related variation in latency represents a putative code for short- and long-term synaptic dynamics in cortical networks.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/fisiología , Dinámicas no Lineales , Tiempo de Reacción/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Modelos Neurológicos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación
13.
J Physiol ; 577(Pt 1): 141-54, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16931548

RESUMEN

Brain sodium channels (NaChs) are regulated by various neurotransmitters such as acetylcholine, serotonin and dopamine. However, it is not known whether NaCh activity is regulated by glutamate, the principal brain neurotransmitter. We show here that activation of metabotropic glutamate receptor (mGluR) subtype 1 regulates fast transient (I(NaT)) and persistent Na(+) currents (I(NaP)) in cortical pyramidal neurons. A selective agonist of group I mGluR, (S)-3,5-dihydroxyphenylglycine (DHPG), reduced action potential amplitude and decreased I(NaT). This reduction was blocked when DHPG was applied in the presence of selective mGluR1 antagonists. The DHPG-induced reduction of the current was accompanied by a shift of both the inactivation curve of I(NaT) and the activation curve of I(NaP). These effects were dependent on the activation of PKC. The respective role of these two regulatory processes on neuronal excitability was determined by simulating transient and persistent Na(+) conductances (G(NaT) and G(NaP)) with fast dynamic-clamp techniques. The facilitated activation of G(NaP) increased excitability near the threshold, but, when combined with the down-regulation of G(NaT), repetitive firing was strongly decreased. Consistent with this finding, the mGluR1 antagonist LY367385 increased neuronal excitability when glutamatergic synaptic activity was stimulated with high external K(+). We conclude that mGluR1-dependent regulation of Na(+) current depresses neuronal excitability, which thus might constitute a novel mechanism of homeostatic regulation acting during intense glutamatergic synaptic activity.


Asunto(s)
Activación del Canal Iónico/fisiología , Neocórtex/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Canales de Sodio/fisiología , Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Ratas , Ratas Wistar , Tiempo de Reacción/fisiología
14.
Traffic ; 7(1): 74-84, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16445688

RESUMEN

Striatin, SG2NA and zinedin, the three mammalian members of the striatin family are multimodular WD-repeat, calmodulin and calveolin-binding proteins. These scaffolding proteins, involved in both signaling and trafficking, are highly expressed in neurons. Using ultrastructural immunolabeling, we showed that, in Purkinje cells and hippocampal neurons, SG2NA is confined to the somatodendritic compartment with the highest density in dendritic spines. In cultured hippocampal neurons, SG2NA is also highly concentrated in dendritic spines. By expressing truncated forms of HA-tagged SG2NAbeta, we demonstrated that the coiled-coil domain plays an essential role in the targeting of SG2NA within spines. Furthermore, co-immunoprecipitation experiments indicate that this coiled-coil domain is also crucial for the homo- and hetero-oligomerization of these proteins. Thus, oligomerization of the striatin family proteins is probably an obligatory step for their routing to the dendritic spines, and hetero-oligomerization explains why all these proteins are often co-expressed in the neurons of the rat brain and spinal cord.


Asunto(s)
Autoantígenos/biosíntesis , Proteínas de Unión a Calmodulina/biosíntesis , Espinas Dendríticas/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/química , Técnicas de Transferencia de Gen , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/fisiología , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...